forked from 12to11/12to11

* 12to11.c (XLMain): Initialize Xlib threads. * compositor.h: Update prototype of ApplyInverseTransform. * egl.c (ComputeTransformMatrix): Handle transforms. (Composite): Ensure textures if none were generated. (FinishRender): Take callback and data and return NULL key. (UpdateBuffer): Handle transforms by uploading everything. Suboptimal! (IsBufferOpaque): New function. (egl_buffer_funcs): Add it. * picture_renderer.c (MaybeApplyTransform): Add some comments. * subcompositor.c (TransformBufferDamage): Avoid inverting damage. (ViewDamageBuffer): Directly apply untransformed buffer damage. (ApplyUntransformedDamage): New function. * transform.c (MatrixRotate): Fix minor row ordering error. (ApplyInverseTransform): Adjust accordingly.
390 lines
9.7 KiB
C
390 lines
9.7 KiB
C
/* Wayland compositor running on top of an X server.
|
|
|
|
Copyright (C) 2022 to various contributors.
|
|
|
|
This file is part of 12to11.
|
|
|
|
12to11 is free software: you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by the
|
|
Free Software Foundation, either version 3 of the License, or (at your
|
|
option) any later version.
|
|
|
|
12to11 is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with 12to11. If not, see <https://www.gnu.org/licenses/>. */
|
|
|
|
/* Generic 3x3 matrix transform code. */
|
|
|
|
#include <string.h>
|
|
#include <stdio.h>
|
|
|
|
#include "compositor.h"
|
|
|
|
#include <X11/extensions/Xrender.h>
|
|
|
|
/* These macros make column major order easier to reason about for C
|
|
folks. */
|
|
#define Index(matrix, row, column) \
|
|
((matrix)[(column) * 3 + (row)])
|
|
|
|
#define MultiplySub(a, b, a_row, a_column, b_row, b_column) \
|
|
(Index (a, a_row, a_column) * Index (b, b_row, b_column))
|
|
|
|
#if 0
|
|
|
|
static void
|
|
MatrixPrint (Matrix *matrix)
|
|
{
|
|
fprintf (stderr,
|
|
"%4f %4f %4f\n"
|
|
"%4f %4f %4f\n"
|
|
"%4f %4f %4f\n\n",
|
|
(double) Index (*matrix, 0, 0),
|
|
(double) Index (*matrix, 0, 1),
|
|
(double) Index (*matrix, 0, 2),
|
|
(double) Index (*matrix, 1, 0),
|
|
(double) Index (*matrix, 1, 1),
|
|
(double) Index (*matrix, 1, 2),
|
|
(double) Index (*matrix, 2, 0),
|
|
(double) Index (*matrix, 2, 1),
|
|
(double) Index (*matrix, 2, 2));
|
|
}
|
|
|
|
#endif
|
|
|
|
void
|
|
MatrixMultiply (Matrix a, Matrix b, Matrix *product)
|
|
{
|
|
Index (*product, 0, 0) = (MultiplySub (a, b, 0, 0, 0, 0)
|
|
+ MultiplySub (a, b, 0, 1, 1, 0)
|
|
+ MultiplySub (a, b, 0, 2, 2, 0));
|
|
Index (*product, 0, 1) = (MultiplySub (a, b, 0, 0, 0, 1)
|
|
+ MultiplySub (a, b, 0, 1, 1, 1)
|
|
+ MultiplySub (a, b, 0, 2, 2, 1));
|
|
Index (*product, 0, 2) = (MultiplySub (a, b, 0, 0, 0, 2)
|
|
+ MultiplySub (a, b, 0, 1, 1, 2)
|
|
+ MultiplySub (a, b, 0, 2, 2, 2));
|
|
|
|
Index (*product, 1, 0) = (MultiplySub (a, b, 1, 0, 0, 0)
|
|
+ MultiplySub (a, b, 1, 1, 1, 0)
|
|
+ MultiplySub (a, b, 1, 2, 2, 0));
|
|
Index (*product, 1, 1) = (MultiplySub (a, b, 1, 0, 0, 1)
|
|
+ MultiplySub (a, b, 1, 1, 1, 1)
|
|
+ MultiplySub (a, b, 1, 2, 2, 1));
|
|
Index (*product, 1, 2) = (MultiplySub (a, b, 1, 0, 0, 2)
|
|
+ MultiplySub (a, b, 1, 1, 1, 2)
|
|
+ MultiplySub (a, b, 1, 2, 2, 2));
|
|
|
|
Index (*product, 2, 0) = (MultiplySub (a, b, 2, 0, 0, 0)
|
|
+ MultiplySub (a, b, 2, 1, 1, 0)
|
|
+ MultiplySub (a, b, 2, 2, 2, 0));
|
|
Index (*product, 2, 1) = (MultiplySub (a, b, 2, 0, 0, 1)
|
|
+ MultiplySub (a, b, 2, 1, 1, 1)
|
|
+ MultiplySub (a, b, 2, 2, 2, 1));
|
|
Index (*product, 2, 2) = (MultiplySub (a, b, 2, 0, 0, 2)
|
|
+ MultiplySub (a, b, 2, 1, 1, 2)
|
|
+ MultiplySub (a, b, 2, 2, 2, 2));
|
|
}
|
|
|
|
void
|
|
MatrixIdentity (Matrix *matrix)
|
|
{
|
|
memset (matrix, 0, sizeof *matrix);
|
|
|
|
Index (*matrix, 0, 0) = 1.0f;
|
|
Index (*matrix, 1, 1) = 1.0f;
|
|
Index (*matrix, 2, 2) = 1.0f;
|
|
}
|
|
|
|
void
|
|
MatrixTranslate (Matrix *transform, float tx, float ty)
|
|
{
|
|
Matrix temp, copy;
|
|
|
|
MatrixIdentity (&temp);
|
|
memcpy (copy, transform, sizeof copy);
|
|
|
|
/* Set the tx and ty. */
|
|
Index (temp, 0, 2) = tx;
|
|
Index (temp, 1, 2) = ty;
|
|
|
|
/* Multiply it with the transform. */
|
|
MatrixMultiply (copy, temp, transform);
|
|
}
|
|
|
|
void
|
|
MatrixScale (Matrix *transform, float sx, float sy)
|
|
{
|
|
Matrix temp, copy;
|
|
|
|
MatrixIdentity (&temp);
|
|
memcpy (copy, transform, sizeof copy);
|
|
|
|
/* Set the scale factors. */
|
|
Index (temp, 0, 0) = sx;
|
|
Index (temp, 1, 1) = sy;
|
|
|
|
/* Multiply it with the transform. */
|
|
MatrixMultiply (copy, temp, transform);
|
|
}
|
|
|
|
void
|
|
MatrixRotate (Matrix *transform, float theta, float x, float y)
|
|
{
|
|
Matrix temp, copy;
|
|
|
|
/* Translate the matrix to x, y, and then perform rotation by the
|
|
given angle in radians and translate back. As the transform is
|
|
being performed in the X coordinate system, the given angle
|
|
describes a clockwise rotation. */
|
|
|
|
MatrixIdentity (&temp);
|
|
memcpy (copy, transform, sizeof copy);
|
|
|
|
Index (temp, 0, 2) = x;
|
|
Index (temp, 1, 2) = y;
|
|
|
|
MatrixMultiply (copy, temp, transform);
|
|
MatrixIdentity (&temp);
|
|
memcpy (copy, transform, sizeof copy);
|
|
|
|
Index (temp, 0, 0) = cosf (theta);
|
|
Index (temp, 0, 1) = -sinf (theta);
|
|
Index (temp, 1, 0) = sinf (theta);
|
|
Index (temp, 1, 1) = cosf (theta);
|
|
|
|
MatrixMultiply (copy, temp, transform);
|
|
MatrixIdentity (&temp);
|
|
memcpy (copy, transform, sizeof copy);
|
|
|
|
Index (temp, 0, 2) = -x;
|
|
Index (temp, 1, 2) = -y;
|
|
|
|
MatrixMultiply (copy, temp, transform);
|
|
}
|
|
|
|
void
|
|
MatrixMirrorHorizontal (Matrix *transform, float width)
|
|
{
|
|
Matrix temp, copy;
|
|
|
|
/* Scale the matrix by -1, and then apply a tx of width, in effect
|
|
flipping the image horizontally. */
|
|
|
|
MatrixIdentity (&temp);
|
|
memcpy (copy, transform, sizeof copy);
|
|
|
|
Index (temp, 0, 0) = -1.0f;
|
|
Index (temp, 0, 2) = width;
|
|
|
|
MatrixMultiply (copy, temp, transform);
|
|
}
|
|
|
|
void
|
|
MatrixExport (Matrix *transform, XTransform *xtransform)
|
|
{
|
|
/* M1 M2 M3 X
|
|
M4 M5 M6 * Y
|
|
M7 M8 M9 Z
|
|
|
|
=
|
|
|
|
M1*X + M2*Y + M3*1 = X1
|
|
M4*X + M5*Y + M6*1 = Y1
|
|
M7*X + M8*Y + M9*1 = Z1 (Only on some drivers)
|
|
|
|
where
|
|
|
|
M1 = matrix[0][0]
|
|
M2 = matrix[0][1]
|
|
M3 = matrix[0][2]
|
|
M4 = matrix[1][0]
|
|
M5 = matrix[1][1]
|
|
M6 = matrix[1][2]
|
|
M7 = matrix[2][0]
|
|
M8 = matrix[2][1]
|
|
M9 = matrix[2][2] */
|
|
|
|
#define Export(row, column) \
|
|
xtransform->matrix[row][column] \
|
|
= XDoubleToFixed (Index (*transform, row, column))
|
|
|
|
Export (0, 0);
|
|
Export (0, 1);
|
|
Export (0, 2);
|
|
|
|
Export (1, 0);
|
|
Export (1, 1);
|
|
Export (1, 2);
|
|
|
|
Export (2, 0);
|
|
Export (2, 1);
|
|
Export (2, 2);
|
|
|
|
#undef Export
|
|
}
|
|
|
|
/* Various routines shared between renderers. */
|
|
|
|
void
|
|
ApplyInverseTransform (int buffer_width, int buffer_height, Matrix *matrix,
|
|
BufferTransform transform)
|
|
{
|
|
float width, height;
|
|
|
|
/* Wayland buffer transforms are somewhat confusing. They are
|
|
actually applied in reverse, so a counterclockwise rotation would
|
|
actually be applied clockwise, and so on.
|
|
|
|
The fact that matrix maps from destination coordinates to buffer
|
|
coordinates makes things easier: as the inverse of the inverse of
|
|
a transform is itself, transforms are just applied in that
|
|
order. */
|
|
|
|
width = buffer_width;
|
|
height = buffer_height;
|
|
|
|
switch (transform)
|
|
{
|
|
case Normal:
|
|
break;
|
|
|
|
case CounterClockwise90:
|
|
/* CounterClockwise90. Rotate the buffer contents 90 degrees
|
|
clockwise. IOW, rotate the destination by 90 degrees
|
|
counterclockwise, which is 270 degrees clockwise. */
|
|
MatrixRotate (matrix, M_PI * 1.5, 0, 0);
|
|
MatrixTranslate (matrix, -height, 0);
|
|
break;
|
|
|
|
case CounterClockwise180:
|
|
/* CounterClockwise180. It's 180 degrees. Apply clockwise 180
|
|
degree rotation around the center. */
|
|
MatrixRotate (matrix, M_PI, width / 2.0f, height / 2.0f);
|
|
break;
|
|
|
|
case CounterClockwise270:
|
|
/* CounterClockwise270. Rotate the buffer contents 270 degrees
|
|
clockwise. IOW, rotate the destination by 270 degrees
|
|
counterclockwise, which is 90 degrees clockwise. */
|
|
MatrixRotate (matrix, M_PI * 0.5, 0, 0);
|
|
MatrixTranslate (matrix, 0, -width);
|
|
break;
|
|
|
|
case Flipped:
|
|
/* Flipped. Apply horizontal flip. */
|
|
MatrixMirrorHorizontal (matrix, width);
|
|
break;
|
|
|
|
case Flipped90:
|
|
/* Flipped90. Apply a flip but otherwise treat this the same as
|
|
CounterClockwise90. */
|
|
MatrixRotate (matrix, M_PI * 1.5, 0, 0);
|
|
MatrixTranslate (matrix, -height, 0);
|
|
MatrixMirrorHorizontal (matrix, height);
|
|
break;
|
|
|
|
case Flipped180:
|
|
/* Flipped180. Apply a flip and treat this the same as
|
|
CounterClockwise180. */
|
|
MatrixRotate (matrix, M_PI, width / 2.0f, height / 2.0f);
|
|
MatrixMirrorHorizontal (matrix, width);
|
|
break;
|
|
|
|
case Flipped270:
|
|
/* Flipped270. Apply a flip and treat this the same as
|
|
CounterClockwise270. */
|
|
MatrixRotate (matrix, M_PI * 0.5, 0, 0);
|
|
MatrixTranslate (matrix, 0, -width);
|
|
MatrixMirrorHorizontal (matrix, height);
|
|
break;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
void
|
|
TransformBox (pixman_box32_t *box, BufferTransform transform,
|
|
int width, int height)
|
|
{
|
|
pixman_box32_t work;
|
|
|
|
switch (transform)
|
|
{
|
|
case Normal:
|
|
default:
|
|
work = *box;
|
|
break;
|
|
|
|
case CounterClockwise90:
|
|
work.x1 = height - box->y2;
|
|
work.y1 = box->x1;
|
|
work.x2 = height - box->y1;
|
|
work.y2 = box->x2;
|
|
break;
|
|
|
|
case CounterClockwise180:
|
|
work.x1 = width - box->x2;
|
|
work.y1 = height - box->y2;
|
|
work.x2 = width - box->x1;
|
|
work.y2 = height - box->y1;
|
|
break;
|
|
|
|
case CounterClockwise270:
|
|
work.x1 = box->y1;
|
|
work.y1 = width - box->x2;
|
|
work.x2 = box->y2;
|
|
work.y2 = width - box->x1;
|
|
break;
|
|
|
|
case Flipped:
|
|
work.x1 = width - box->x2;
|
|
work.y1 = box->y1;
|
|
work.x2 = width - box->x1;
|
|
work.y2 = box->y2;
|
|
break;
|
|
|
|
case Flipped90:
|
|
work.x1 = box->y1;
|
|
work.y1 = box->x1;
|
|
work.x2 = box->y2;
|
|
work.y2 = box->x2;
|
|
break;
|
|
|
|
case Flipped180:
|
|
work.x1 = box->x1;
|
|
work.y1 = height - box->y2;
|
|
work.x2 = box->x2;
|
|
work.y2 = height - box->y1;
|
|
break;
|
|
|
|
case Flipped270:
|
|
work.x1 = height - box->y2;
|
|
work.y1 = width - box->x2;
|
|
work.x2 = height - box->y1;
|
|
work.y2 = width - box->x1;
|
|
break;
|
|
}
|
|
|
|
*box = work;
|
|
}
|
|
|
|
BufferTransform
|
|
InvertTransform (BufferTransform transform)
|
|
{
|
|
switch (transform)
|
|
{
|
|
case CounterClockwise270:
|
|
return CounterClockwise90;
|
|
|
|
case CounterClockwise90:
|
|
return CounterClockwise270;
|
|
|
|
default:
|
|
return transform;
|
|
}
|
|
}
|